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Abstract. We studied the dynamics of surface and wake charges induced by a charged particle
traversing a dielectric slab. It is shown that, after crossing the first boundary of the slab, the
charge induced on the slab surface (image charge) is transformed into the wake charge, which
‘overflows’ to the second boundary when the particle crosses that. It is also shown, that the
polarization of the slab is of an oscillatory nature, and the net induced charge in a slab remains
zero at all stages of the motion.

1. Introduction

As it passes through a medium, a fast charged particle excites oscillations of the charge
density behind itself (Bohr 1948, Pines 1953, Neufeld and Ritchie 1955). These wake fields,
and the particle energy losses associated with their excitation, have been studied widely for
a variety of media (Neufeld and Ritchie 1955, Neelavathiet al 1974, Vager and Gemmell
1976, Landau and Lifshitz 1982, Brueckneret al 1982, Nersisyan 1993). Wake fields have
recently reattracted interest because of the development of new methods for accelerating
particles (Chenet al 1984, 1985, Keinigs and Jones 1987).

In most studies of wake fields it has been assumed that the medium is unbounded.
The wake fields are excited as the particle enters the medium, or they disappear when
the particle leaves the medium, because of various transient polarization processes which
occur near the interface. Among these processes, the excitation of surface oscillations and
the associated additional energy loss have been studied previously (Ritchie 1957,Éidman
1965, Pafomov and Fetisov 1967, Ritchie and Marusak 1966, Chan and Richmond 1973,
1975, 1976, Flores and Garcı́a-Moliner 1979, Echeniqueet al 1981, Gorbunovet al 1992,
Nersisyan and Matevosyan 1995). In connection with the development of new particle
acceleration methods, numerical calculations have determined the distance from the sharp
plasma boundary at which the amplitude of the wake field excited by an ultrarelativistic
particle reaches the same level as in an unbounded medium (Mtingwa 1988).

Fairly recently, in connection with problems of emission electronics and optoelectronics,
the image charge and the dynamical image potential created by a moving particle has
also been investigated. To describe the process of formation of the image charge, various
approaches (quantum mechanical, hydrodynamic, etc) and various models of the medium
have been employed (Zangwill 1990, Abajo and Echenique 1992, Rivacobaet al 1992,
Arista 1994).

In the present paper we analyse the dynamics of reversal of the sign of the charges
induced at the slab boundary (repolarization of the slab) as the particle crosses the interface.
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The process is found to be of a nonmonotonic, oscillatory nature. The case of normal
incidence of a particle through the slab is considered.

The paper is arranged as follows. In section 2, general expressions for the density
of the wake charge and the total wake charge have been found, using Poisson’s equation.
Section 3 gives general expressions for the density of induced surface charges and the total
charges have been found, using expressions for the normal component of the electric field in
the internal and external space of the slab (Ginzburg and Tsytovich 1979, 1984). We apply
the results obtained in sections 2 and 3 to the case of a slab constructed from a diatomic
cubic ionic crystal or polar semiconductor. In section 4, the results obtained are discussed.

2. The electromagnetic field of a charged particle traversing a slab

We consider a fast particle of chargeq moving with a velocityu along thez-axis normal to
the boundaries of a slab characterized by a local dielectric functionε(ω). The time interval
t during which the particle moves through the medium is 0< t < a/u, wherea is the slab
thickness. Outside this interval the particle moves in a vacuum.

Ginzburg and Tsytovich (1979, 1984) have given the expressions for the electromagnetic
field of a fast charge passing through a slab. We shall briefly repeat the method for obtaining
these expressions.

Since the problem is homogeneous both in time and direction in each domainz < 0,
0 < z < a, andz > a normal to the charge velocity, it is convenient to represent all field
components as Fourier integrals over time and traverse coordinatesr = (x, y). Then the
Fourier component of the electric field is obtained from the Maxwell equations:[
∂2

∂z2
+ ω

2

c2
ε(ω)− k2

]
E(k, ω, z) = 4π

[
− iωu

c2
n+ 1

ε(ω)

(
ik + n ∂

∂z

)]
ρ0(k, ω, z)

(2.1)

wheren = u/u, k = (kx, ky), ρ0(k, ω, z) is the Fourier component of the charge density
of the particle

ρ0(k, ω, z) = q

(2π)3u
exp

(
i
ω

u
z
)
. (2.2)

The Fourier component of the magnetic field is expressed throughE(k, ω, z) as follows:

B(k, ω, z) = c

ω
{−i[∇ ×E(k, ω, z)] + [k ×E(k, ω, z)]}. (2.3)

The total solution of (2.1) for a charge density (2.2) is a sum of solutions to homogeneous
and inhomogeneous equations. While the first equation describes the radiation field, the
second equation describes the particle field proper in a medium with local dielectric function
ε(ω). Also, equation (2.1) must be solved for each domain inside and outside the slab, and
therefore the solutions are joined using the boundary conditions (equality of normal induction
components and transverse electric field components on the boundary)

Ez(k, ω,−0) = ε(ω)Ez(k, ω,+0) ε(ω)Ez(k, ω, a − 0) = Ez(k, ω, a + 0) (2.4)

k ·E(k, ω,−0) = k ·E(k, ω,+0) k ·E(k, ω, a − 0) = k ·E(k, ω, a + 0). (2.5)

Taking account of these conditions, the following system of relations is obtained:

E(k, ω, z) = E(1)(k, ω)exp(iωz/u)

+ 2iq

(2π)2kω
a
(−)
1

(
kn+ k ω

kc
τ1

)
exp[−i(ω/c)τ1z] z < 0 (2.6)
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E(k, ω, z) = E(2)(k, ω)exp(iωz/u)+ 2iq

(2π)2kω

[
a
(−)
2

(
kn+ k ω

kc
τ2

)
exp[−i(ω/c)τ2z]

+a(+)2

(
kn− k ω

kc
τ2

)
exp[i(ω/c)τ2z]

]
06 z 6 a (2.7)

E(k, ω, z) = E(1)(k, ω)exp(iωz/u)

+ 2iq

(2π)2kω
a
(+)
1

(
kn− k ω

kc
τ1

)
exp[i(ω/c)τ1z] z > a (2.8)

where

E(1)(k, ω) = − 2iq

(2π)2
ωn+ γ 2uk

ω2+ γ 2k2u2
(2.9)

E(2)(k, ω) = − 2iq

(2π)2
ω[1− β2ε(ω)]n+ uk

ε(ω){ω2[1− β2ε(ω)] + k2u2} (2.10)

τ1 =
√

1− k2c2/ω2 τ2 =
√
ε(ω)− k2c2/ω2 (2.11)

a
(−)
1 = − βk2c2/ω2

(1− β2τ 2
1 )(1− β2τ 2

2 )

1− ε(ω)
D(k, ω)

×{f (1)− exp[i(ω/c)τ2a] + f (2)− exp[−i(ω/c)τ2a] + f (3)− exp(iωa/u)} (2.12)

a
(+)
1 = βk2c2/ω2

(1− β2τ 2
1 )(1− β2τ 2

2 )

1− ε(ω)
D(k, ω)

exp[(iωa/u)(1− βτ1)]

×{f (1)+ exp[i(ω/c)τ2a] + f (2)+ exp[−i(ω/c)τ2a] + f (3)+ exp(−iωa/u)} (2.13)

f
(1)
± = (τ2− ετ1)(1∓ βτ2)(1± βτ2− β2) (2.14)

f
(2)
± = (τ2+ ετ1)(1± βτ2)(1∓ βτ2− β2) (2.15)

f
(3)
± = 2τ2[β2(1+ ε − k2c2/ω2)− 1± β2ετ1] (2.16)

D(k, ω) = {(τ2+ ετ1)
2 exp[−i(ω/c)τ2a] − (τ2− ετ1)

2 exp[i(ω/c)τ2a]} (2.17)

andβ = u/c, γ−2 = 1− β2. The functionsa(−)2 anda(+)2 are expressed througha(−)1 and
a
(+)
1 and are not explicitly given here. They may be obtained from the matching conditions

for the normal component of the electric induction on the surfacesz = 0 andz = a.
The first terms in (2.6) and (2.8) describe the Coulomb field of the particle. The first

term in (2.7) describes the particle field in an unbounded medium characterized by the
dielectric functionε(ω). The field is identical with a Cherenkov radiation electric field in
the frequency rangeβ2ε(ω) > 1. All other terms are due to the existence of boundaries.
Particularly, they describe the transition radiation in the backward (second term in (2.6))
and forward (second term in (2.8)) directions (Ginzburg and Tsytovich 1979, 1984).

3. The wake charge evaluation

In this section we shall consider the volume charge induced by a moving particle in a slab
(the so-called wake charge). To evaluate the wake charge, the Poisson equation is used

ρv = (1/4π)∇ ·E − ρ0 (3.1)

in which theρ0 = qδ(r)δ(ξ) is the charge density of a test particle,ξ = z − ut,E is
the electric field in the slab which is determined by the inverse Fourier transformation of
(2.7). Since the divergence of the second term in (2.7) (of the radiation field) is zero, the
wake-charge density is determined only by the first term in (2.7).
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Using this term in the relation (3.1) we obtain

ρv = q

2πu
δ(r)

∫ +∞
−∞

dω exp(iωξ/u)
1− ε(ω)
ε(ω)

(3.2)

where δ(x) is a Dirac function. Since the dielectric function of the medium has poles
only in the lowerω half-plane (Landau and Lifshitz 1982), no induced charge exists in
front (ξ > 0) of the particle. Note that the relation (3.2) may be also obtained from the
expression for electrostatic potential created by the particle in unbounded medium described
by a dielectric functionε(ω) (Landau and Lifshitz 1982).

Evaluating an integral of expression (3.2) over the volume we obtain the wake charge,
induced by the particle, moving in the slab:

Qv(t) = −q[8(t)−8(τ)] (3.3)

where

8(t) = 1

2π i
P

∫ +∞
−∞

dω

ω
exp(−iωt)

1− ε(ω)
ε(ω)

= − 1

2

(
1− 1

ε0

)
+ θ(t)

{
1− 1

ε0
−
∑
j

exp(−νj t)[Aj cos(ωj t)+ Bj sin(ωj t)]

}
(3.4)

and τ = t − a/u, ε0 is the static dielectric constant of the medium,θ(t) is the Heaviside
unit step function (withθ(0) = 1

2), the symbolP denotes the principal value of the integral,
±ωj − iνj are the solutions of the equationε(ω) = 0 (νj > 0), while coefficientsAj and
Bj are

Aj = 2 Re

{
1

(ωj − iνj )ε′(ωj − iνj )

}
Bj = 2 Im

{
1

(ωj − iνj )ε′(ωj − iνj )

}
. (3.5)

Here the prime denotes differentiation with respect to the argument. The summation in (3.4)
is carried over all zeros of the dielectric function.

Analytic properties of the dielectric function (Landau and Lifshitz 1982) and the residue
theorem were used in the evaluation of8(t).

4. Calculation of the induced surface charges

The surface-induced charge density is related to the discontinuity of the electric fieldz-
component. Expressions (2.6)–(2.8) give

σi(r, t) =
∫

d2k

∫ +∞
−∞

dω σi(k, ω)exp[i(kr − ωt)] (4.1)

where

(2π)2σ0(k, ω) = iq

2πω

1− ε(ω)
ε(ω)

[
− ω2

ω2+ γ 2k2u2
+ a(−)1

]
(4.2)

(2π)2σa(k, ω) = iq

2πω

ε(ω)− 1

ε(ω)

{
−ω

2 exp(iωa/u)

ω2+ γ 2k2u2
+ a(+)1 exp[i(ω/c)τ1a]

}
(4.3)

and indicesi = 0, a refer to the first and second boundaries.
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The total induced charge is obtained by integration of expressions (4.1)–(4.3):

Qis(t) =
∫

d2 rσi(r, t) = (2π)2
∫ +∞
−∞

dω σi(ω) exp(−iωt)

whereσi(ω) = σi(k = 0, ω). (4.4)

Let us consider the dynamics of induced charges for the dielectric slab, the dielectric
function of which, as it is known, has no singularity in the static limit, whenω→ 0 (Landau
and Lifshitz 1982). It is clear from expressions (2.12) and (2.13) that the functionsa

(−)
1

anda(+)1 in expressions (4.2) and (4.3) are proportional tok2, and calculating the function
σi(ω) for the dielectric slab the above-mentioned functions tend to zero. Thus, the charges
being induced on the surfaces of the dielectric slab are determined only by the first terms
in expressions (4.2) and (4.3), that is by the electric fields which are created by the particle
in an unbounded dielectric with the dielectric functionε(ω) and in the vacuum when the
dielectric is absent.

Using the known Sokhotsky–Plemel relations (Landau and Lifshitz 1982) for quantities
σi(ω) in (4.4) we have

(2π)2σ0(ω) = q

2π i

1− ε(ω)
ε(ω)

P
1

ω
(4.5)

(2π)2σa(ω) = − q

2π i

1− ε(ω)
ε(ω)

exp(iωa/u)P
1

ω
. (4.6)

The following relations are obtained from expressions (3.4), (4.4)–(4.6)

Qos(t) = q8(t) Qas(t) = −q8(τ). (4.7)

Thus, expressions (3.4) and (4.7) make it possible to obtain the total surface charge as soon
as the zeros of the functionε(ω) are known. One may easily verify that, at any time, the
net induced charge (a sum ofQos,Qas andQv) in the slab is zero.

The following interpretation for expressions (3.3), (3.4) and (4.7) may be given.
When the particle approaches the slab surface from a vacuum(t < 0) we haveQos =
−(q/2)(1− 1/ε0), Qas = (q/2)(1− 1/ε0), andQv = 0. Note that the first boundary of the
slab is charged oppositely to the second boundary.

While the particle moves inside the medium(0 < t < a/u), the first boundary charge
oscillates and decreases:

Qos(t) = q

2

(
1− 1

ε0

)
− q

∑
j

exp(−νj t)[Aj cos(ωj t)+ Bj sin(ωj t)]. (4.8)

Meanwhile the volume charge is increased:

Qv(t) = −q
(

1− 1

ε0

)
+ q

∑
j

exp(−νj t)[Aj cos(ωj t)+ Bj sin(ωj t)]. (4.9)

The second boundary charge remains unchanged.
For t > a/u we have

Qas(t) = −q
2

(
1− 1

ε0

)
+ q

∑
j

exp(−νj τ )[Aj cos(ωj τ )+ Bj sin(ωj τ )] (4.10)

Qv(t) = q
∑
j

exp(−νj t)[Aj cos(ωj t)+ Bj sin(ωj t)]

−q
∑
j

exp(−νj τ )[Aj cos(ωj τ )+ Bj sin(ωj τ )] (4.11)
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The charge on the first boundary is given in this case by expression (4.8).
After the particle crosses the second boundary(t > a/u), the charge on the first boundary

decreases to its lower limit(q/2)(1− 1/ε0). On the second boundary the charge value
increases and attains its maximum−(q/2)(1− 1/ε0) when t � a/u. The wake charge in
the volume becomes equal to zero.

Thus it follows that after the particle crosses the first boundary, the surface charge is
transformed into the wake charge. The latter is transformed again into the surface charge
after the particle crosses the second boundary.

We apply the results represented by expressions (3.3), (3.4) and (4.7) for the induced
charges in the model of diatomic cubic ionic crystal or polar semiconductor, whose dielectric
function is given by (Ashcroft and Mermin 1979)

ε(ω) = ε∞ω
2
L − ω2− iνω

ω2
T − ω2− iνω

. (4.12)

In this expressionε∞ is the optical frequency dielectric function,ωL and ωT are the
frequencies of the longitudinal and transverse-optical vibration modes of infinite wavelength,
ν is the damping rate, which we assume to be small(ν � ωL), andε0 is the static dielectric
function, which enters the theory through the Lyddane–Sachs–Teller relation,ω2

Tε0 = ω2
Lε∞.

Expression (4.12) implies that its rootε(ω) = 0 has the following form:

ωj − iνj = − iν

2
+� (4.13)

where�2 = ω2
L − ν2/4. Substituting (4.12) and (4.13) into expression (3.5), we find the

coefficients determining the net induced charges:

Aj ≡ A = 1

ε∞
− 1

ε0
Bj = gA g = ν

2�
. (4.14)

Figure 1 depicts the time dependence ofQos(t),Qas(t), andQv(t) for the slab of LiF.
The following values of the parameters were taken for numerical calculations:ε∞ = 1.96

Figure 1. The dynamics of the induced charge at the front boundary (full curve), the rear
boundary (broken curve), and in the volume (dotted curve) for the slab of LiF. The following
values of the parameters were taken for numerical calculations:ε∞ = 1.96, ε0 = 9.01,
ν/ωL = 0.2, and�a/u = 15.
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andε0 = 9.01 (Ashcroft and Mermin 1979),ν/ωL = 0.2, and�a/u = 15. We see that as
the particle crosses the boundary, the surface and wake charges oscillate with a frequency
�, although the net induced charge remains equal to zero.

5. Conclusion

Let us briefly discuss the conditions in which the processes taking place at the boundaries
of the slab can be considered independent and the boundary can be interpreted as that of a
half-space, as was done by Gorbunovet al 1992.

We see from expressions (3.3), (3.4) and (4.7) that if the conditiona < u/νj is met,
the charge−q(1− 1/ε0) has no time to transform into the wake charge before the particle
reaches the second boundary. For this reason the transformation of a surface charge into
a wake charge and the transformation of the latter into a surface charge at the second
boundary are interrelated. When the particle crosses the second boundary of the slab, near
the boundary it excites electric-field oscillations (Neufeld and Ritchie 1955, Ginzburg and
Tsytovich 1979, 1984, Nersisyan and Matevosyan 1995) whose phase is related to that of
the oscillations of the electric field near the first boundary. For the fields at the boundaries
to be completely independent,a must exceedu/νj . In this case not only the amplitudes but
also the phases of oscillations of the electric fields at the boundaries are independent.

We would like to end our consideration with the following note. The densities of induced
surface charges (expressions (4.1)–(4.3)) and its corresponding surface current densities may
be considered as the sources of transition radiation (Ginzburg and Tsytovich 1979, 1984).
As follows from (4.2) and (4.3), the densities of induced surface charges are determined
by both electrostatic and electromagnetic fields created by the moving particle. The total
induced surface charges, determined by (3.4) and (4.7), do not depend on the velocity of
light and, therefore, are determined only by electrostatic fields. Thus, electromagnetic fields
do not contribute into the total induced surface charge. It seems that relativistic effects
apparently reveal themselves in the case when the thickness of the medium traversed is
limited.
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